
MATH20132 Calculus of Several Variables. 2020-21

Solutions to Problems 9 Lagrange’s Method

1. For x ∈ R2 let f(x) = x2 − 3xy + y2 − 5x+ 5y

i. Find the critical values of f(x) in R2,

ii. Find the critical values of f(x) restricted to the parametric curve (t2, t3)
T
, t ∈

R,

iii. Find the critical values of f(x) restricted to the level set x+ 6y = 6 (use
Lagrange’s method).

Solution i The critical values of f(x) in R2 are the solutions of ∇f(x) =
0. The two components of the gradient vector give 2x − 3y − 5 = 0 and
−3x+ 2y + 5 = 0. So the critical point in R2 is (1,−1)T .

ii. For the critical points of f(x) : x = (t2, t3)
T
, t ∈ R look for the critical

points of f
(

(t2, t3)
T
)

: t ∈ R, i.e. when the gradient vector is zero.

For a function of one variable the gradient vector has one component, the
derivative of

f
((
t2, t3

)T)
= t4 − 3t5 + t6 − 5t2 + 5t3,

which is 6t5 − 15t4 + 4t3 + 15t2 − 10t. This factors as

t (t− 1) (t+ 1)
(
6t2 − 15t+ 10

)
(The square can be completed in the quadratic factor as 6 (t− 5/4)2 + 5/8
which shows that it is never zero and so cannot be factored further.)

Thus there are critical points when t = 0, 1 and −1, i.e. at points

(0, 0)T , (1, 1)T and (1,−1)T .

iii. For the critical points of f(x) : x+ 6y = 6 we use Lagrange’s method. So
if g(x) = x+ 6y− 6, we try to solve ∇f(x) = λ∇g(x) along with x+ 6y = 6.
The co-ordinates of the gradient vectors give the system

2x− 3y − 5 = λ and 3x+ 2y + 5 = 6λ.

Solve for x and y :

x = 1− 4λ and y = −1− 3λ.
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Yet we require x + 6y = 6, i.e. (1− 4λ) − 6 (1 + 3λ) = 6, which leads to
λ = −1/2. Hence the only critical point is (3, 1/2)T .

Note we did not need to use Lagrange’s method, we could instead have
substituted x = −6y+6 in f(x) and looked for the turning points fy(x) = 0.

The point of the question is that a function f(x), x ∈ S ⊆ Rn may
have different critical points depending on the set S. Also, if S is given
parametrically as the image of g (u) , u ∈ Rm, we look for critical points of
f(g (u)). Thus Lagrange’s method is only applied when S is a level set.

2. i. Find the minimum value of 3x2 + 3y2 + z2 subject to the condition
x+ y + z = 1.

ii. Find the maximum and minimum values of xy subject to the condition
x2 + y2 = 1.

iii. Find the minimum and maximum values of xy2 subject to the condition
x2/a2 + y2/b2 = 1 (where a and b are positive constants).

Solution i. Let f(x) = 3x2 + 3y2 + z2, and g (x) = x + y + z − 1, x ∈ R3.
We wish to find min {f(x) : g(x) = 0} .

The set {x : g(x) = 0} is a level set and, to be a surface, the Jacobian of g
has to be full rank. Yet g is scalar-valued so this is equivalent to demanding
that the gradient of g is non-zero. Here ∇g(x) = (1, 1, 1)T for all x and so
is non-zero for all x and we can apply the method of Lagrange multipliers.
This gives the equation ∇f(x) = λ∇g(x) for some λ along with g(x) = 0 .

Write these equations as

(6x, 6y, 2z) = λ (1, 1, 1) ,

x+ y + z = 1.

The first gives y = x, z = 3x. In the second this gives x = 1/5 in which
case y = 1/5 and z = 3/5. (That λ = 6/5 is true but of no interest.) Hence

a = (1/5, 1/5, 3/5)T

is an extremal point of f(x) restricted to g(x) = 0. At this point f(a) =
3/25 + 3/25 + 9/25 = 3/5.

The set of x : x + y + z = 1 is closed but not bounded, so we cannot
immediately say that f(x) attains it’s lower bound at a. You could argue
by first restricting to the box |x| , |y| , |z| ≤ 1. We now have a closed and
bounded region on which f(x) will attain it’s lower bound. When you look
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for this point you will either find a or a point on the boundary. But for any
point on the boundary or even outside the box, i.e. when we have at least
one of |x| ≥ 1, |y| ≥ 1 or |z| ≥ 1, then f(x) ≥ 1 > f(a). Thus f(a) is the
minimum value.

ii. Let f(x) = xy, and g(x) = x2 + y2 − 1 with x ∈ R2. Here ∇g(x) =

(2x, 2y)T which is non-zero for all x : g (x) = 0. So we can apply the method
of Lagrange multipliers. The method gives the equations

(y, x) = λ (2x, 2y) along with x2 + y2 = 1.

From the first y = 2λx and x = 2λy which together gives x = 4λ2x. The
solutions of this are either x = 0 or λ = ±1/2.

• If x = 0 then y = 2λx = 0 but (0, 0)T is not a point satisfying x2+y2 =
1.

• If λ = ±1/2 then y = 2λx = ±x. In x2 + y2 = 1 this gives x = ±1/
√

2.
Thus we have four solutions

a1 =
(

1/
√

2, 1/
√

2
)T

, a2 =
(

1/
√

2, −1/
√

2
)T

,

a3 =
(
−1/
√

2, 1/
√

2
)T

, a4 =
(
−1/
√

2, −1/
√

2
)T

.

Since the circle x2 + y2 = 1 is a closed and bounded set the continuous
function f must have minimum and maximum values on it. These must
occur within the points we have found.

Checking,

• f(a2) = f(a3) = −1/2 is the minimum value,

• f(a1) = f(a4) = 1/2 the maximum.
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What we are doing in this problem is finding the points on the blue line
with the largest height, i.e. largest value of z, with (x, y)T restricted to the
red circle.

q1

q2

q3

q4

p1

p2

p3

p4

x

y

z

iii. Let f(x) = xy2 where x ∈ R2, subject to the condition x2/a2+y2/b2−1 =

0. Here ∇g(x) = (2x/a2, 2y/b2)
T

which is non-zero for all x : g (x) = 0. So
we can apply the method of Lagrange multipliers. The method gives the
equations (

y2, 2xy
)

= λ

(
2x

a2
,

2y

b2

)
and

x2

a2
+
y2

b2
= 1.

From 2xy = λy/b2 either y = 0 or x = λ/b2.

• If x = λ/b2 then, combined with y2 = 2λx/a2, we get y2 = 2λ2/a2b2.
In x2/a2 + y2/b2 = 1 we get

1

a2

(
λ

b2

)2

+
1

b2
2λ2

a2b2
= 1, i.e. λ = ±ab

2

√
3

.

Thus we get four points

x =

(
λ

b2
, ±
√

2
λ

ab

)T

=

(
± a√

3
, ±
√

2
b√
3

)T

.

• If y = 0 then x = ±a and we get two more point (±a, 0)T .

Since the ellipse x2/a2 + y2/b2 = 1 is closed and bounded a continuous
function must have minimum and maximum values. By evaluating the func-
tion at the points found above we see that the minimum is −2ab2/3

√
3, the

maximum 2ab2/3
√

3 (given that a is positive.)
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Note In both parts ii & iii the problem can be reduced to a problem of one
variable:

i. Finding extrema of xy subject to x2+y2 = 1 is the same as finding extrema
of ±x

√
1− x2;

ii Finding extrema of xy2 subject to x2/a2 + y2/b2 = 1 is the same as finding
extrema of b2x(1− x2/a2).

But, if asked to use Lagrange’s method, use it!

3 Find points on the circle (x− 2)2 + (y + 1)2 = 4 which are a maximum
and minimum distance from the origin.

Hint consider the square of the distance.

Solution Follow the hint and find the minimum and maximum of the square
of the distance function from the origin to (x, y)T . So we start by finding the
critical points of x2 + y2 subject to (x− 2)2 + (y + 1)2 = 4.

Here ∇g(x) = (2 (x− 2) , 2 (y + 1))T 6= 0 for all x : g (x) = 0. The
method of Lagrange’s multipliers then gives

2x = 2λ (x− 2) and 2y = 2λ (y + 1) .

Rearrange as

(λ− 1) (x− 2) = 2 and (λ− 1) (y + 1) = −1.

Multiply (x− 2)2+(y + 1)2 = 4 by (λ− 1)2 and substitute in (λ− 1) (x− 2) =
2 to get 22 + (−1)2 = 4 (λ− 1)2. The resulting 4 (λ− 1)2 = 5 has two solu-
tions λ = 1±

√
5/2. These lead to the points(

10 + 4
√

5

5
, −5 + 2

√
5

5

)T

and

(
10− 4

√
5

5
, −5− 2

√
5

5

)T

,

respectively.

Note this can be checked. Without proof it seems reasonable that if we
consider the straight line through the origin and the centre of the circle
(2,−1)T , then the circle will intersect this line at the points we need (this
would require a proof). The point of the question is that if you need a
critical point of the distance you can find a critical point of the square of the
distance.
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4. Find the minimum distance from the point on the x-axis (a, 0)T ∈ R2 to
the parabola y2 = x.

Solution As in the previous question, consider the square of the distance
from (a, 0)T to a point (x, y)T on the parabola, which is (x− a)2 + (y − 0)2.

So, we need to minimise f(x) = (x− a)2 + y2 subject to the condition
g(x) = 0, x ∈ R2, where g(x) = y2 − x. Here ∇g(x) = (−1, 2y)T which is
never zero so we can apply the method of Lagrange multipliers. This gives

2 (x− a) = −λ,
2y = 2λy,

y2 = x.

From 2y = 2λy either y = 0 or λ = 1.

• If y = 0 then x = y2 = 0 too.

• If λ = 1 then 2 (x− a) = −1, i.e. x = a − 1/2 and y = ±
√
x =

±
√
a− 1/2 provided a ≥ 1/2.

So the critical points are 0 and, when a > 1/2,

a1 =
(
a− 1/2,

√
a− 1/2

)T
, a2 =

(
a− 1/2, −

√
a− 1/2

)T
.

Checking at the points found: f(0) = a2 and, if a ≥ 1/2, f(a1) = f(a2) =
a−1/4. Take the positive root to find the distance and we have the minimum
distance is {

|a| if a < 1/2√
a− 1/4 if a ≥ 1/2.

The set of x : g(x) = 0 is closed but not bounded so we need an ad-hoc
argument (not given here) to prove that we have, in fact, found the minimum
values.

5. Find the extremal values of f(x) = xy + yz, x ∈ R3 on the level set

x2 + y2 = 1

yz − x = 0.
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Solution For this we need that the Jacobian of the level set is of full rank.
The Jacobian is (

2x 2y 0
−1 z y

)
.

On x2 + y2 = 1 we cannot have x and y zero simultaneously, so the top row
of the Jacobian is never 0. The two rows are possibly linearly dependent if
y = 0, but then yz = x implies x = 0 which we have noted is not possible.
Thus the Jacobian matrix is of full rank for all x in the level set and we can
apply the method of Lagrange multipliers.

At extremal values there exist λ, µ ∈ R such that

∇f(x) = λ∇
(
x2 + y2

)
+ µ∇ (yz − x) .

So we have the system

y = λ2x− µ, x+ z = 2yλ+ µz, y = µy, x2 + y2 = 1 and yz = x.

From y = µy either y = 0 or µ = 1.

• If y = 0 the last two conditions become x2 = 1 and 0 = x of which
there is no solution.

• So y 6= 0 and µ = 1, when the system becomes

y = λ2x− 1, x = 2yλ, x2 + y2 = 1 and yz = x.

From the second, 2λ = x/y, which in the first gives y = x2/y − 1.
Rearrange so y2 + y = x2 = 1 − y2, having used the third equation.
Therefore 2y2 + y− 1 = 0. This factorises as (2y − 1) (y + 1) = 0. The
solution y = 1/2 gives x = ±

√
3/2 and z = ±

√
3. The solution y = −1

gives x = 0 = z.

Hence, the solutions are

a1 = (0, −1, 0)T ,

a2 =
(√

3/2, 1/2,
√

3
)T

,

a3 =
(
−
√

3/2, 1/2, −
√

3
)T

.

Calculating f at these points give f(a1) = 0, f(a2) = 3
√

3/4, the maxi-
mum value, f(a3) = −3

√
3/4, the minimum value.
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The set of x : g(x) = 0 is closed but not bounded so we need an ad-hoc
argument (not given here) to prove that we have, in fact, found the extremum
values.

6. Find the maximum and minimum values of 4y − 2z subject to the condi-
tions 2x− y − z = 2 and x2 + y2 = 1.

Solution The level set is closed and bounded. (x2+y2 = 1 implies |x| , |y| ≤ 1
while 2x − y − z = 2 means |z| = |2x− y − 2| ≤ 2 |x| + |y| + 2 ≤ 5, by the
triangle inequality.) The function f(x) = 4y − 2z is continuous and so must
have maximum and minimum values on the level set.

The Jacobian matrix of the level set is(
2 −1 −1

2x 2y 0

)
.

This is not of full-rank only if x = y = 0 which, because of x2 + y2 = 1 does
not lie on the level set. So at all points of the level set the Jacobian matrix
is of full-rank and we can apply the method of Lagrange multipliers.

At extremal values there exist λ, µ ∈ R such that ∇f(x) = λ∇g1 (x) +
µ∇g2 (x). This gives system of equations

0 = 2λ+ 2µx

4 = −λ+ 2µy

−2 = −λ,

along with 2x− y − z = 2 and x2 + y2 = 1.

Substituting λ = 2 into the first two equations gives µy = 3 and µx = −2.
Then, multiplying x2 + y2 = 1 by µ gives µ2 = (µx)2 + (µy)2 = 4 + 9 so
µ = ±

√
13. Thus

x = ∓2/
√

13, and y = ±3/
√

13.

Then
z = 2x− y − 2 = ∓4/

√
13∓ 3/

√
13− 2 = ∓7/

√
13− 2.

So the two critical points of f on the surface are

a1 =
(

2/
√

13, −3/
√

13, 7/
√

13− 2
)T

,

a2 =
(
−2/
√

13, 3/
√

13, −7/
√

13− 2
)T

.
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All that remains are the calculations

f(a1) = −26/
√

13 + 4 = −2
√

13 + 4,

f(a2) = 2
√

13 + 4.

Therefore the maximum value of f on S is 2
√

13+4, the minimum −2
√

13+4.

7 Find the minimum distance between a point on the circle in R2 with the
equation x2 + y2 = 1 and a point on the parabola in R2 with the equation
y2 = 2(4− x).

Solution Let (x, y)T be a point on the circle, so x2 + y2 = 1, and let
(u, v)T be a point on the parabola, so v2 = 2 (4− u). Then, as in Question
2, the problem is to minimize the function f(x) = (x− u)2 + (y − v)2, where
x = (x, y, u, v)T (the square of the distance between (x, y)T and (u, v)T )
subject to the constraint

g(x) =

(
x2 + y2 − 1

v2 − 2 (4− u)

)
= 0.

The Jacobian matrix

Jg(x) =

(
2x 2y 0 0

0 0 2 2v

)
is not of full rank only if either row is zero. The second row is obviously never
zero, the first is if x = y = 0 but this does not satisfy x2 + y2 = 1. Hence we
can apply the method of Lagrange multipliers. This gives the equations

∇f(x) = λ∇g1(x) + µ∇g2(x), x2 + y2 = 1 and v2 = 2 (4− u) .

The first of these is
2 (x− u)

2 (y − v)

−2 (x− u)

−2 (y − v)

 = λ


2x
2y
0
0

+ µ


0
0
2
2v

 .

So

(x− u) = λx, (1)

(y − v) = λy,

− (x− u) = µ,

− (y − v) = µv.
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There are many ways to solve this system, what follows is just one.

From the last pair − (x− u) = µ and − (y − v) = µv we get v (x− u) =
y − v. Then from the first pair

λy = y − v = v (x− u) = λvx,

i.e. λy = λvx. Thus either λ = 0 or y = vx.

• If λ = 0 then from the first two lines in (6) we have x = u and y = v,
i.e. (x, y) = (u, v). But this is impossible since the curves x2 + y2 =
1 and y2 = 2 (4− x) do not intersect. (If they did x would satisfy
1− x2 = 2 (4− x) and you can check this has no real roots.)

• If y = vx then multiply v (x− u) = y− v through by x and use vx = y
to get y (x− u) = x (y − v) i.e. uy = vx = y. Thus either y = 0 or
u = 1.

∗ If y = 0 then from x2 + y2 = 1, x = ±1. From y = vx, v = 0 in
which case, from v2 = 2 (4− u), we obtain u = 4. So we get the
two points

a1 = (1, 0, 4, 0)T and a2 = (−1, 0, 4, 0)T .

∗ If u = 1 then, from v2 = 2 (4− u) ,we obtain ν = ±
√

6. Then
y = vx = ±

√
6x. Using x2 + y2 = 1 we find x = ±1/

√
7. Thus we

get a further four points

a3 =
(

1/
√

7,
√

6/7, 1,
√

6
)T

,

a4 =
(

1/
√

7, −
√

6/7, 1, −
√

6
)T

,

a5 =
(
−1/
√

7, −
√

6/7, 1,
√

6
)T

,

a6 =
(
−1/
√

7,
√

6/7, 1, −
√

6
)T

.

Note that because of y = vx there is not a free choice on the sign
of y, it follows from the choices for x and v, thus four points.
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Now we are left with the calculations, f(a1) = 9, f(a2) = 25,

f(a3) = f(a4) = 8− 2
√

7 and f(a6) = f(a5) = 8 + 2
√

7

The minimum distance therefore is 8− 2
√

7, approximately 2.70849......

8. An ellipse in R3 is given by the equations{
2x2 + y2 = 4,

x+ y + z = 0.

The intersection of a cylinder with a plane.

Use the method of Lagrange multipliers to find the points on the ellipse which
are closest to the y-axis.

(This is a question from the June 2012 examination which turned out to be
too difficult! It should be alright away from the pressure of the examination
room. When you come to solving a system of equations remember to focus
on finding x, y and z, i.e. remove the Lagrange parameters λ and µ as soon
as possible.)

Solution Given points (x, y, z)T on the ellipse and (0, v, 0)T on the y - axis,
the square of their distance apart is x2 + (y − v)2 + z2. When this is minimal
we must have y = v, and so it remains to minimise f(x) = x2 + z2, subject
to g (x) = 0 where

g(x) =

(
2x2 + y2 − 4

x+ y + z

)
.

The level set x : g(x) = 0 is closed and bounded. The function f is
continuous and so will be bounded and will attain it’s bounds.

The Jacobian matrix of g is

Jg(x) =

(
4x 2y 0
1 1 1

)
.

This is not full rank only if x = y = 0 but this does not occur in any solution
of g(x) = 0. Hence we can apply the method of Lagrange multipliers and
solve

∇f(x) = λ∇g1(x) + µ∇g2(x) with x ∈ R3, λ, µ ∈ R and g(x) = 0.
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This gives the equations

2x = 4λx+ µ,

0 = 2λy + µ,

2z = µ,

along with g (x) = 0. Substituting the third equation µ = 2z into the first
two give

x = 2λx+ z and λy = −z.

Multiply the first of these by y and substitute in the second to get

xy = −2zx+ zy = −z (2x− y) .

From g2(x) = 0 we have −z = x+ y so

xy = (x+ y) (2x− y) = 2x2 + xy − y2, i.e. y2 = 2x2.

From g1(x) = 0, we have 4 = 2x2+y2. Combined with y2 = 2x2 this gives
4 = 4x2 so x = ±1. Then y = ±

√
2 and z follows from z = −x− y.

This leads to four critical points of f restricted to the surface:

a1 =
(

1,
√

2, −1−
√

2
)T

,

a2 =
(

1, −
√

2, −1 +
√

2
)T

,

a3 =
(
−1,
√

2, 1−
√

2
)T

,

a4 =
(
−1, −

√
2, 1 +

√
2
)T

.

Calculating,

f(a1) = 4 + 2
√

2,

f(a2) = 4− 2
√

2,

f(a3) = 4− 2
√

2,

f(a4) = 4 + 2
√

2.

So a2 and a3 are the points on the ellipse closest to the y-axis.
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Solutions to Additional Questions

Solutions have not been written up for all of the following.

9 Show that xy has a maximum on the ellipse 9x2 + 4y2 = 36 and find it’s
value.

Solution The function xy is continuous, the ellipse 9x2+4y2 = 36 is a closed
and bounded set. Hence xy is bounded and attains it’s bounds.

Lagrange’s multipliers gives y = 18λx and x = 8λy. Then

x = 8λy = 8λ (18λx)

so either x = 0 or 1 = 144λ2.

• If x = 0 then y = 18λx = 0. Yet (0, 0)T does not satisfy 9x2 + 4y2 = 36
so there are no critical points with x = 0.

• If 1 = 144λ2 then λ = ±1/12 and thus y = ±3x/2. In 9x2 + 4y2 = 36
this gives 18x2 = 36 and thus x = ±

√
2. Hence we have four critical

points:(√
2, 3/
√

2
)T

,
(√

2,−3/
√

2
)T

,
(
−
√

2, 3/
√

2
)T

and
(
−
√

2,−3/
√

2
)T

.

The maximal xy will come from critical points with non-zero coordinates of

the same sign, i.e.
(√

2, 3/
√

2
)T

and
(
−
√

2,−3/
√

2
)T

. Hence the maximal
value is 3.

10 Find the maximum and minimum values of

x2 + y2 + z2 − xy − xz − yz

subject to the condition

x2 + y2 + z2 − 2x+ 2y + 6z + 9 = 0.

Solution We can complete the squares so

0 = x2 + y2 + z2 − 2x+ 2y + 6z + 9

= (x− 1)2 + (y + 1)2 + (z + 3)2 − 2.

Thus, geometrically, we are looking for the extrema of

f(x) = x2 + y2 + z2 − xy − xz − yz
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subject to x ∈ R3 lying on the surface of a sphere, centre (1,−1,−3)T ,
radius

√
2. The surface of a sphere is closed and bounded. The function f is

continuous and so will be bounded and will attain it’s bounds.

Let g (x) = x2 + y2 + z2 − 2x+ 2y + 6z + 9. Then

Jg(x) = (2x− 2, 2y + 2, 2z + 6) ,

which is zero only if x = (1,−1,−3). But since g is not zero at this point
Jg(x) is of full rank at x : g (x) = 0. So we can apply the method of Lagrange
multiplies, which requires solving ∇f(x) = λ∇g(x) for some λ ∈ R. From
this we get

2x− y − z = 2λx− 2λ, (2)

2y − x− z = 2λy + 2λ, (3)

2z − x− y = 2λz + 6λ,

along with g (x) = 0.

Summing the equations above gives 0 = 2λ (x+ y + z + 3). So either
λ = 0 or x+ y + z + 3 = 0.

• If λ = 0 then

2x− y − z = 0,

2y − x− z = 0,

2z − x− y = 0.

Subtracting the first two gives x = y. In the third get x = y = z. From
g (x) = 0 then get 3x2 + 6x+ 9 = 0, i.e. x2 + 2x+ 3 = 0. But this has
no real solutions since x2 + 2x+ 3 = (x+ 1)2 + 2 ≥ 2 > 0.

• Hence λ 6= 0 and we must have x + y + z + 3 = 0. Rearrange, z =
−3− x− y and substitute into (2) and (3) to get

(2λ− 3)x = 3 + 2λ and (2λ− 3) y = 3− 2λ.

Then

(2λ− 3) z = −3 (2λ− 3)− x (2λ− 3)− y (2λ− 3) = −6λ+ 3.

Substitute into g (x) = 0 to get

0 = −2
4λ2 − 12λ− 27

(2λ− 3)2
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The numerator factorises as (3 + 2λ) (2λ− 9) so we find two solutions
λ = −3/2 and λ = 9/2. Substituted back in we find

a1 = (0,−1,−2)T and a2 = (2,−1,−4)T .

The calculations are f(a1) = 3, the minimum and f(a1) = 27 the maxi-
mum value.

11. Find the shortest distance from the origin to x2 + 3xy + y2 = 4.

12. Find the shortest distance from (0, 0, 1)T to y2 +x2 + 4xy = 4 in the x-y
plane.

Solution This problem is in R3 even though y2 + x2 + 4xy = 4 appears to
be in R2. The general point of R3 on y2 + x2 + 4xy = 4 is (x, y, 0)T . The
(square of the) distance of this point from (0, 0, 1)T is x2 +y2 +1. So we need
minimise x2 + y2 + 1 subject to y2 + x2 + 4xy = 4. Lagrange multipliers give

2x = λ (2x+ 4y) and 2y = λ (2y + 4x) .

Rearrange as (1− λ)x = 2λy and (1− λ) y = 2λx. Then

(1− λ)2 x = (1− λ) 2λy = 4λ2x.

So either x = 0 or (1− λ)2 = 4λ2.

• If x = 0 in y2 +x2 +4xy = 4 then y = ±2. So we get two critical points

(0, 2, 0)T and (0,−2, 0)T .

• If (1− λ)2 = 4λ2 then either 1− λ = 2λ or 1− λ = −2λ.

∗ If 1 − λ = 2λ, i.e. λ = 1/3, then (1− λ)x = 2λy implies x = y.
In y2 + x2 + 4xy = 4 this leads to 6x2 = 4, so x = ±

√
2/3. This

gives two more critical points(√
2/3,

√
2/3, 0

)T
and

(
−
√

2/3, −
√

2/3, 0
)T

.

∗ If 1−λ = −2λ, i.e. λ = −1, then (1− λ)x = 2λy implies x = −y.
In y2 + x2 + 4xy = 4 this leads to −2x2 = 4 which has no real
roots and we get no more critical points.
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The last two critical points give the minimal distance, 4/3.

13. A cylindrical can (with top and bottom) has volume V . Subject to this
constraint, what dimensions give it the least surface area?

Idea of solution If the cylinder of height h and radius r the area is 2πrh+
2πr2 and volume πr2h. So the essence of the question is to minimise rh+ r2

subject to πr2h = V.

Solution Define g(h, r) = πr2h − V and f(r, h) = rh + r2. The set of
(h, r)T : g(h, r) = 0 is closed but not bounded. But f is continuous and
bounded below by 0. Thus it will have a minimum value.

The Jacobian matrix is Jg(h, r) = (πr2, 2πrh). This is only not of full
rank if r = 0 but this does not satisfy g(h, r) = 0 for any h. Hence the
Jacobian matrix is of full-rank and we can apply Lagrange’s method to find
λ : ∇f(h, r) = λ∇g(h, r). That is

r = λπr2 and h+ 2r = λ2rπh,

along with g(h, r) = 0.

From r = λπr2 we have either r = 0, but we saw above that this was
impossible, or 1 = λπr. In the second equation this gives h + 2r = 2h, i.e.
h = 2r. (The height of the cylinder equals the diameter of the base.) In

g(h, r) = 0 this gives 2πr3 = V . Then r = (V/2π)1/3, h = 2 (V/2π)1/3 and
the surface area is

3 (2π)1/3 V 2/3.

14. Find the nearest point on the ellipse x2 + 2y2 = 1 to the line x+ y = 4.

Idea of solution If (x, y)T is a point on the ellipse and (u, v)T a point on
the line then (x− u)2 + (y − v)2 is the square of the distance between the
two points. So need to minimise (x− u)2 + (y − v)2 subject to x2 + 2y2 = 1
and u+ v = 4.

15. How close does the intersection of the planes v +w + x+ y + z = 1 and
v − w + 2x− y + z = −1 in R5 come to the origin?

Idea of solution To minimise v2 + w2 + x2 + y2 + z2 (the square of the
distance of (v, w, x, y, z)T from the origin) subject to v + w + x + y + z = 1
and v − w + 2x− y + z = −1. The answer is

√
612/36.

16



Solution Let

g(x) =

(
v + w + x+ y + z − 1
v − w + 2x− y + z + 1

)
.

for x = (x, y, z, v, w)T . Then

Jg(x) =

(
1 1 1 1 1
2 −1 1 1 −1

)
which is of full-rank. So we can apply Lagrange’s method, solving ∇f(x) =
λ∇g1(x) + µ∇g2(x) for some λ, µ ∈ R along with g1(x) = 0 and g2(x) = 0.
The first condition leads to

2v = λ+ µ,

2w = λ− µ,
2x = λ+ 2µ,

2y = λ− µ
2z = λ+ µ.

From these we see that z = v and y = w. Substituted into g1(x) = 0 and
g2(x) = 0 we have 5 equations in 5 unknowns:

2v = λ+ µ,

2w = λ− µ,
2x = λ+ 2µ,

2v + 2w + x = 1,

2v − 2w + 2x = −1

The first two give 2v + 2w = 2λ. The second and third 4w + 2x = 3λ.
Thus we have three equations in three unknowns:

3v − w − 2x = 0,

2v + 2w + x = 1,

2v − 2w + 2x = −1.

In matrix form  3 −1 −2
2 2 1
2 −2 2

 v
w
x

 =

 0
1
−1
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Thus  v
w
x

 =
1

36

 6 6 3
−2 10 −7
−8 4 8

 0
1
−1

 =
1

36

 3
17
−4

 .

Then

f(x) = v2 + w2 + x2 + y2 + z2 = 2v2 + 2w2 + x2

=
1

362

(
2× 32 + 2× 172 + (−4)2

)
=

612

362
.

We have minimised the square of the distance, so the minimum distance
is
√

612/36.

16. Let x1, ..., x5 be 5 positive numbers. Maximise their product subject to
the constraint that x1 + 2x2 + 3x3 + 4x4 + 5x5 = 300.

Solution Let f(x) = x1x2x3x4x5 and g(x) = x1+2x2+3x3+4x4+5x5−300
for x = (x1, x2, x3, x4, x5)

T ∈ R5. First, Jg(x) = (1, 2, 3, 4, 5) 6= 0 and so
we can apply Lagrange’s method. This means solving ∇f(x) = λ∇g(x) for
some λ ∈ R along with g (x) = 0 and xi > 0 for 1≤ i≤n. That is,

x2x3x4x5 = λ

x1x3x4x5 = 2λ

x1x2x4x5 = 3λ

x1x2x3x5 = 4λ

x1x2x3x4 = 5λ,

(4)

with g (x) = 0 and xi > 0 for 1≤ i≤n. From (4) we see that

λx1 = 2λx2 = 3λx3 = 4λx4 = 5λx5. (5)

If λ = 0 then, from (4), at least one xi = 0 when f(x) = 0. Presumably
we can find larger values for f(x) so assume λ 6= 0. Then from (5) ,

x1 = 2x2 = 3x3 = 4x4 = 5x5.

For this x we have

g(x) = x1 + 2x2 + 3x3 + 4x4 + 5x5 − 300

= 5x5 + 5x5 + 5x5 + 5x5 + 5x5 − 300

= 25x5 − 300.
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The requirement g(x) = 0 gives x5 = 12. Thus

x1 = 60, x2 = 30, x3 = 20 and x4 = 15.

At this point x = (60, 30, 20, 15, 12)T we find that f(x) = 6480000.

17. Find the distance from the point (10, 1,−6) to the intersection of the
planes x+ y + 2z = 5 and 2x− 3y + z = 12.

Solution To minimise (x− 10)2 + (y − 1)2 + (z + 6)2 subject to

x+ y + 2z = 5 and 2x− 3y + z = 12. (6)

The Jacobian matrix of this level set,(
1 1 2
2 −3 1

)
,

is of full-rank and so we can apply the method of Lagrange multipliers. This
means solving  2 (x− 10)

2 (y − 1)
2 (z + 6)

 = λ

 1
1
2

+ µ

 2
−3

1

 ,

with λ, µ ∈ R along with (6).

2 (x− 10) = λ+ 2µ (a) ,

2 (y − 1) = λ− 3µ (b) ,

2 (z + 6) = 2λ+ µ (c) .

Then 3 (a) + 2 (b) and (b) + 3 (c) give

6 (x− 10) + 4 (y − 1) = 5λ,

6 (z + 6) + 2 (y − 1) = 7λ.

Remove λ and rearrange to 7x+ 3y − 5z = 103. We thus have

x+ y + 2z = 5,

2x− 3y + z = 12,

7x+ 3y − 5z = 103.
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Solve. One way is to write it as 1 1 2
2 −3 1
7 3 −5

 x
y
z

 =

 5
12

103

 .

The inverse of the matrix is

1

83

 12 11 7
17 −19 3
27 4 −5

 .

Hence  x
y
z

 =
1

83

 12 11 7
17 −19 3
27 4 −5

 5
12

103

 =

 11
2
−4

 .

Therefore, the nearest point on line is (11, 2,−4)T and the.distance is
√

6.

18. If a and b are positive numbers find the maximum and minimum values
of (xv − yu)2 subject to the constraints x2 + y2 = a2 and u2 + v2 = b2.

Geometrically Consider two concentric circles with centre the origin, of
radius a and b. Let x = (x, y)T be a point on the circle of radius a and
u = (u, v) a point on the circle of radius b. Look upon x and u as vectors
based at the origin. Then |xv − yu| = |x ∧ u|, which represents the area
between the vectors x and u. It is the case that this is minimised when x
and u lie in the same direction, for the area will be zero. It doesn’t seem
unreasonable that the maximum is when x and u are orthogonal in which
case |x ∧ u| = |x| |u| = ab. To prove this we might note that whatever x
and u are, we can rotate the situation so that u lies along the x-axis, i.e.
u = (b, 0). Then the problem reduces to one of finding the extrema of y2b2

subject to x2 + y2 = a2.

19. Find the dimensions of the box parallel to the axes of maximum volume
given that the surface area is 10m2.

Idea of solution If x, y and z are the lengths of the sides of the box then
the volume is xyz and the surface area 2 (xy + yz + xz). So maximise xyz
subject to xy + yz + xz = 5.

Solution Let f(x) = xyz and S(x) = xy+ yz + xz− 5 for x ∈ R3. Physical
constraints imply that x > 0, y > 0 and z > 0 Our problem is to determine
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the maximum of f(x) subject to S(x) = 0 and x > 0, y > 0 and z > 0. The
gradient vectors are

∇f(x) = (yz, xz, xy)T and ∇S(x) = (y + z, x+ z, x+ y)T .

Note first that, ∇S(x) = 0, if, and only if, x = 0, which does not satisfy
S (x) = 0. So we can apply the method of Lagrange multiplies, which requires
solving ∇f(x) = λ∇S(x) for some λ ∈ R along with S (x) = 0. That is

yz = λ (y + z) ,

xz = λ (x+ z) ,

xy = λ (x+ y) .

If λ = 0 then yz = xz = xy = 0. Adding together we see that S (x) =
−5 6= 0. So we have λ 6= 0.

Multiply by the appropriate factor to get

xyz = λ (xy + xz) ,

xyz = λ (xy + yz) ,

xyz = λ (xz + yz) .

Since λ 6= 0 we can divide by λ and deduce that xy + xz = xy + yz =
xz + yz, i.e. yz = xz = xy. Since no term is 0 we find that x = y = z. In
S (x) = 5 this leads to 3x2 = 5, i.e. x = (5/3)1/2. Then the maximal volume

is (5/3)3/2.
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