MATH20132 Calculus of Several Variables.

Solutions to Problems 9 Lagrange's Method

1. For $\mathbf{x} \in \mathbb{R}^{2}$ let $f(\mathbf{x})=x^{2}-3 x y+y^{2}-5 x+5 y$
i. Find the critical values of $f(\mathbf{x})$ in \mathbb{R}^{2},
ii. Find the critical values of $f(\mathbf{x})$ restricted to the parametric curve $\left(t^{2}, t^{3}\right)^{T}, t \in$ \mathbb{R},
iii. Find the critical values of $f(\mathbf{x})$ restricted to the level set $x+6 y=6$ (use Lagrange's method).

Solution i The critical values of $f(\mathbf{x})$ in \mathbb{R}^{2} are the solutions of $\nabla f(\mathbf{x})=$ $\mathbf{0}$. The two components of the gradient vector give $2 x-3 y-5=0$ and $-3 x+2 y+5=0$. So the critical point in \mathbb{R}^{2} is $(1,-1)^{T}$.
ii. For the critical points of $f(\mathbf{x}): \mathbf{x}=\left(t^{2}, t^{3}\right)^{T}, t \in \mathbb{R}$ look for the critical points of $f\left(\left(t^{2}, t^{3}\right)^{T}\right): t \in \mathbb{R}$, i.e. when the gradient vector is zero.

For a function of one variable the gradient vector has one component, the derivative of

$$
f\left(\left(t^{2}, t^{3}\right)^{T}\right)=t^{4}-3 t^{5}+t^{6}-5 t^{2}+5 t^{3}
$$

which is $6 t^{5}-15 t^{4}+4 t^{3}+15 t^{2}-10 t$. This factors as

$$
t(t-1)(t+1)\left(6 t^{2}-15 t+10\right)
$$

(The square can be completed in the quadratic factor as $6(t-5 / 4)^{2}+5 / 8$ which shows that it is never zero and so cannot be factored further.)

Thus there are critical points when $t=0,1$ and -1 , i.e. at points

$$
(0,0)^{T},(1,1)^{T} \text { and }(1,-1)^{T}
$$

iii. For the critical points of $f(\mathbf{x}): x+6 y=6$ we use Lagrange's method. So if $g(\mathbf{x})=x+6 y-6$, we try to solve $\nabla f(\mathbf{x})=\lambda \nabla g(\mathbf{x})$ along with $x+6 y=6$. The co-ordinates of the gradient vectors give the system

$$
2 x-3 y-5=\lambda \quad \text { and } \quad 3 x+2 y+5=6 \lambda .
$$

Solve for x and y :

$$
x=1-4 \lambda \quad \text { and } \quad y=-1-3 \lambda .
$$

Yet we require $x+6 y=6$, i.e. $(1-4 \lambda)-6(1+3 \lambda)=6$, which leads to $\lambda=-1 / 2$. Hence the only critical point is $(3,1 / 2)^{T}$.
Note we did not need to use Lagrange's method, we could instead have substituted $x=-6 y+6$ in $f(\mathbf{x})$ and looked for the turning points $f_{y}(\mathbf{x})=0$.

The point of the question is that a function $f(\mathbf{x}), \mathbf{x} \in S \subseteq \mathbb{R}^{n}$ may have different critical points depending on the set S. Also, if S is given parametrically as the image of $\mathbf{g}(\mathbf{u}), \mathbf{u} \in \mathbb{R}^{m}$, we look for critical points of $f(\mathbf{g}(\mathbf{u}))$. Thus Lagrange's method is only applied when S is a level set.
2. i. Find the minimum value of $3 x^{2}+3 y^{2}+z^{2}$ subject to the condition $x+y+z=1$.
ii. Find the maximum and minimum values of $x y$ subject to the condition $x^{2}+y^{2}=1$.
iii. Find the minimum and maximum values of $x y^{2}$ subject to the condition $x^{2} / a^{2}+y^{2} / b^{2}=1$ (where a and b are positive constants).

Solution i. Let $f(\mathbf{x})=3 x^{2}+3 y^{2}+z^{2}$, and $g(\mathbf{x})=x+y+z-1, \mathbf{x} \in \mathbb{R}^{3}$. We wish to find $\min \{f(\mathbf{x}): g(\mathbf{x})=0\}$.

The set $\{\mathbf{x}: g(\mathbf{x})=0\}$ is a level set and, to be a surface, the Jacobian of g has to be full rank. Yet g is scalar-valued so this is equivalent to demanding that the gradient of g is non-zero. Here $\nabla g(\mathbf{x})=(1,1,1)^{T}$ for all \mathbf{x} and so is non-zero for all \mathbf{x} and we can apply the method of Lagrange multipliers. This gives the equation $\nabla f(\mathbf{x})=\lambda \nabla g(\mathbf{x})$ for some λ along with $g(\mathbf{x})=0$.

Write these equations as

$$
\begin{aligned}
(6 x, 6 y, 2 z) & =\lambda(1,1,1), \\
x+y+z & =1
\end{aligned}
$$

The first gives $y=x, z=3 x$. In the second this gives $x=1 / 5$ in which case $y=1 / 5$ and $z=3 / 5$. (That $\lambda=6 / 5$ is true but of no interest.) Hence

$$
\mathbf{a}=(1 / 5,1 / 5,3 / 5)^{T}
$$

is an extremal point of $f(\mathbf{x})$ restricted to $g(\mathbf{x})=0$. At this point $f(\mathbf{a})=$ $3 / 25+3 / 25+9 / 25=3 / 5$.

The set of $\mathbf{x}: x+y+z=1$ is closed but not bounded, so we cannot immediately say that $f(\mathbf{x})$ attains it's lower bound at \mathbf{a}. You could argue by first restricting to the box $|x|,|y|,|z| \leq 1$. We now have a closed and bounded region on which $f(\mathbf{x})$ will attain it's lower bound. When you look
for this point you will either find a or a point on the boundary. But for any point on the boundary or even outside the box, i.e. when we have at least one of $|x| \geq 1,|y| \geq 1$ or $|z| \geq 1$, then $f(\mathbf{x}) \geq 1>f(\mathbf{a})$. Thus $f(\mathbf{a})$ is the minimum value.
ii. Let $f(\mathbf{x})=x y$, and $g(\mathbf{x})=x^{2}+y^{2}-1$ with $\mathbf{x} \in \mathbb{R}^{2}$. Here $\nabla g(\mathbf{x})=$ $(2 x, 2 y)^{T}$ which is non-zero for all $\mathbf{x}: g(\mathbf{x})=0$. So we can apply the method of Lagrange multipliers. The method gives the equations

$$
(y, x)=\lambda(2 x, 2 y) \quad \text { along with } \quad x^{2}+y^{2}=1
$$

From the first $y=2 \lambda x$ and $x=2 \lambda y$ which together gives $x=4 \lambda^{2} x$. The solutions of this are either $x=0$ or $\lambda= \pm 1 / 2$.

- If $x=0$ then $y=2 \lambda x=0$ but $(0,0)^{T}$ is not a point satisfying $x^{2}+y^{2}=$ 1.
- If $\lambda= \pm 1 / 2$ then $y=2 \lambda x= \pm x$. In $x^{2}+y^{2}=1$ this gives $x= \pm 1 / \sqrt{2}$. Thus we have four solutions

$$
\begin{aligned}
& \mathbf{a}_{1}=(1 / \sqrt{2}, 1 / \sqrt{2})^{T}, \mathbf{a}_{2}=(1 / \sqrt{2},-1 / \sqrt{2})^{T} \\
& \mathbf{a}_{3}=(-1 / \sqrt{2}, 1 / \sqrt{2})^{T}, \mathbf{a}_{4}=(-1 / \sqrt{2},-1 / \sqrt{2})^{T} .
\end{aligned}
$$

Since the circle $x^{2}+y^{2}=1$ is a closed and bounded set the continuous function f must have minimum and maximum values on it. These must occur within the points we have found.

Checking,

- $f\left(\mathbf{a}_{2}\right)=f\left(\mathbf{a}_{3}\right)=-1 / 2$ is the minimum value,
- $f\left(\mathbf{a}_{1}\right)=f\left(\mathbf{a}_{4}\right)=1 / 2$ the maximum.

What we are doing in this problem is finding the points on the blue line with the largest height, i.e. largest value of z, with $(x, y)^{T}$ restricted to the red circle.

iii. Let $f(\mathbf{x})=x y^{2}$ where $\mathbf{x} \in \mathbb{R}^{2}$, subject to the condition $x^{2} / a^{2}+y^{2} / b^{2}-1=$ 0 . Here $\nabla g(\mathbf{x})=\left(2 x / a^{2}, 2 y / b^{2}\right)^{T}$ which is non-zero for all $\mathbf{x}: g(\mathbf{x})=0$. So we can apply the method of Lagrange multipliers. The method gives the equations

$$
\left(y^{2}, 2 x y\right)=\lambda\left(\frac{2 x}{a^{2}}, \frac{2 y}{b^{2}}\right) \quad \text { and } \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

From $2 x y=\lambda y / b^{2}$ either $y=0$ or $x=\lambda / b^{2}$.

- If $x=\lambda / b^{2}$ then, combined with $y^{2}=2 \lambda x / a^{2}$, we get $y^{2}=2 \lambda^{2} / a^{2} b^{2}$.

In $x^{2} / a^{2}+y^{2} / b^{2}=1$ we get

$$
\frac{1}{a^{2}}\left(\frac{\lambda}{b^{2}}\right)^{2}+\frac{1}{b^{2}} \frac{2 \lambda^{2}}{a^{2} b^{2}}=1, \text { i.e. } \lambda= \pm \frac{a b^{2}}{\sqrt{3}} .
$$

Thus we get four points

$$
\mathbf{x}=\left(\frac{\lambda}{b^{2}}, \pm \sqrt{2} \frac{\lambda}{a b}\right)^{T}=\left(\pm \frac{a}{\sqrt{3}}, \pm \sqrt{2} \frac{b}{\sqrt{3}}\right)^{T} .
$$

- If $y=0$ then $x= \pm a$ and we get two more point $(\pm a, 0)^{T}$.

Since the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is closed and bounded a continuous function must have minimum and maximum values. By evaluating the function at the points found above we see that the minimum is $-2 a b^{2} / 3 \sqrt{3}$, the maximum $2 a b^{2} / 3 \sqrt{3}$ (given that a is positive.)

Note In both parts ii \& iii the problem can be reduced to a problem of one variable:
i. Finding extrema of $x y$ subject to $x^{2}+y^{2}=1$ is the same as finding extrema of $\pm x \sqrt{1-x^{2}}$;
ii Finding extrema of $x y^{2}$ subject to $x^{2} / a^{2}+y^{2} / b^{2}=1$ is the same as finding extrema of $b^{2} x\left(1-x^{2} / a^{2}\right)$.

But, if asked to use Lagrange's method, use it!

3 Find points on the circle $(x-2)^{2}+(y+1)^{2}=4$ which are a maximum and minimum distance from the origin.

Hint consider the square of the distance.
Solution Follow the hint and find the minimum and maximum of the square of the distance function from the origin to $(x, y)^{T}$. So we start by finding the critical points of $x^{2}+y^{2}$ subject to $(x-2)^{2}+(y+1)^{2}=4$.

Here $\nabla g(\mathbf{x})=(2(x-2), 2(y+1))^{T} \neq \mathbf{0}$ for all $\mathbf{x}: g(\mathbf{x})=0$. The method of Lagrange's multipliers then gives

$$
2 x=2 \lambda(x-2) \text { and } 2 y=2 \lambda(y+1) .
$$

Rearrange as

$$
(\lambda-1)(x-2)=2 \text { and }(\lambda-1)(y+1)=-1 .
$$

Multiply $(x-2)^{2}+(y+1)^{2}=4$ by $(\lambda-1)^{2}$ and substitute in $(\lambda-1)(x-2)=$ 2 to get $2^{2}+(-1)^{2}=4(\lambda-1)^{2}$. The resulting $4(\lambda-1)^{2}=5$ has two solutions $\lambda=1 \pm \sqrt{5} / 2$. These lead to the points

$$
\left(\frac{10+4 \sqrt{5}}{5},-\frac{5+2 \sqrt{5}}{5}\right)^{T} \text { and }\left(\frac{10-4 \sqrt{5}}{5},-\frac{5-2 \sqrt{5}}{5}\right)^{T}
$$

respectively.
Note this can be checked. Without proof it seems reasonable that if we consider the straight line through the origin and the centre of the circle $(2,-1)^{T}$, then the circle will intersect this line at the points we need (this would require a proof). The point of the question is that if you need a critical point of the distance you can find a critical point of the square of the distance.
4. Find the minimum distance from the point on the x-axis $(a, 0)^{T} \in \mathbb{R}^{2}$ to the parabola $y^{2}=x$.

Solution As in the previous question, consider the square of the distance from $(a, 0)^{T}$ to a point $(x, y)^{T}$ on the parabola, which is $(x-a)^{2}+(y-0)^{2}$.

So, we need to minimise $f(\mathbf{x})=(x-a)^{2}+y^{2}$ subject to the condition $g(\mathbf{x})=0, \mathbf{x} \in \mathbb{R}^{2}$, where $g(\mathbf{x})=y^{2}-x$. Here $\nabla g(\mathbf{x})=(-1,2 y)^{T}$ which is never zero so we can apply the method of Lagrange multipliers. This gives

$$
\begin{aligned}
2(x-a) & =-\lambda, \\
2 y & =2 \lambda y, \\
y^{2} & =x .
\end{aligned}
$$

From $2 y=2 \lambda y$ either $y=0$ or $\lambda=1$.

- If $y=0$ then $x=y^{2}=0$ too.
- If $\lambda=1$ then $2(x-a)=-1$, i.e. $x=a-1 / 2$ and $y= \pm \sqrt{x}=$ $\pm \sqrt{a-1 / 2}$ provided $a \geq 1 / 2$.

So the critical points are $\mathbf{0}$ and, when $a>1 / 2$,

$$
\mathbf{a}_{1}=(a-1 / 2, \sqrt{a-1 / 2})^{T}, \mathbf{a}_{2}=(a-1 / 2,-\sqrt{a-1 / 2})^{T} .
$$

Checking at the points found: $f(\mathbf{0})=a^{2}$ and, if $a \geq 1 / 2, f\left(\mathbf{a}_{1}\right)=f\left(\mathbf{a}_{2}\right)=$ $a-1 / 4$. Take the positive root to find the distance and we have the minimum distance is

$$
\left\{\begin{array}{cc}
|a| & \text { if } a<1 / 2 \\
\sqrt{a-1 / 4} & \text { if } a \geq 1 / 2
\end{array}\right.
$$

The set of $\mathbf{x}: g(\mathbf{x})=0$ is closed but not bounded so we need an ad-hoc argument (not given here) to prove that we have, in fact, found the minimum values.
5. Find the extremal values of $f(\mathbf{x})=x y+y z, \mathbf{x} \in \mathbb{R}^{3}$ on the level set

$$
\begin{array}{r}
x^{2}+y^{2}=1 \\
y z-x=0 .
\end{array}
$$

Solution For this we need that the Jacobian of the level set is of full rank. The Jacobian is

$$
\left(\begin{array}{ccc}
2 x & 2 y & 0 \\
-1 & z & y
\end{array}\right) .
$$

On $x^{2}+y^{2}=1$ we cannot have x and y zero simultaneously, so the top row of the Jacobian is never 0 . The two rows are possibly linearly dependent if $y=0$, but then $y z=x$ implies $x=0$ which we have noted is not possible. Thus the Jacobian matrix is of full rank for all \mathbf{x} in the level set and we can apply the method of Lagrange multipliers.

At extremal values there exist $\lambda, \mu \in \mathbb{R}$ such that

$$
\nabla f(\mathbf{x})=\lambda \nabla\left(x^{2}+y^{2}\right)+\mu \nabla(y z-x) .
$$

So we have the system

$$
y=\lambda 2 x-\mu, \quad x+z=2 y \lambda+\mu z, \quad y=\mu y, \quad x^{2}+y^{2}=1 \quad \text { and } \quad y z=x .
$$

From $y=\mu y$ either $y=0$ or $\mu=1$.

- If $y=0$ the last two conditions become $x^{2}=1$ and $0=x$ of which there is no solution.
- So $y \neq 0$ and $\mu=1$, when the system becomes

$$
y=\lambda 2 x-1, \quad x=2 y \lambda, \quad x^{2}+y^{2}=1 \quad \text { and } y z=x .
$$

From the second, $2 \lambda=x / y$, which in the first gives $y=x^{2} / y-1$. Rearrange so $y^{2}+y=x^{2}=1-y^{2}$, having used the third equation. Therefore $2 y^{2}+y-1=0$. This factorises as $(2 y-1)(y+1)=0$. The solution $y=1 / 2$ gives $x= \pm \sqrt{3} / 2$ and $z= \pm \sqrt{3}$. The solution $y=-1$ gives $x=0=z$.

Hence, the solutions are

$$
\begin{aligned}
& \mathbf{a}_{1}=(0,-1,0)^{T} \\
& \mathbf{a}_{2}=(\sqrt{3} / 2,1 / 2, \sqrt{3})^{T} \\
& \mathbf{a}_{3}=(-\sqrt{3} / 2,1 / 2,-\sqrt{3})^{T}
\end{aligned}
$$

Calculating f at these points give $f\left(\mathbf{a}_{1}\right)=0, f\left(\mathbf{a}_{2}\right)=3 \sqrt{3} / 4$, the maximum value, $f\left(\mathbf{a}_{3}\right)=-3 \sqrt{3} / 4$, the minimum value.

The set of $\mathbf{x}: g(\mathbf{x})=0$ is closed but not bounded so we need an ad-hoc argument (not given here) to prove that we have, in fact, found the extremum values.
6. Find the maximum and minimum values of $4 y-2 z$ subject to the conditions $2 x-y-z=2$ and $x^{2}+y^{2}=1$.

Solution The level set is closed and bounded. $\left(x^{2}+y^{2}=1\right.$ implies $|x|,|y| \leq 1$ while $2 x-y-z=2$ means $|z|=|2 x-y-2| \leq 2|x|+|y|+2 \leq 5$, by the triangle inequality.) The function $f(\mathbf{x})=4 y-2 z$ is continuous and so must have maximum and minimum values on the level set.

The Jacobian matrix of the level set is

$$
\left(\begin{array}{rrr}
2 & -1 & -1 \\
2 x & 2 y & 0
\end{array}\right) .
$$

This is not of full-rank only if $x=y=0$ which, because of $x^{2}+y^{2}=1$ does not lie on the level set. So at all points of the level set the Jacobian matrix is of full-rank and we can apply the method of Lagrange multipliers.

At extremal values there exist $\lambda, \mu \in \mathbb{R}$ such that $\nabla f(\mathbf{x})=\lambda \nabla g^{1}(\mathbf{x})+$ $\mu \nabla g^{2}(\mathbf{x})$. This gives system of equations

$$
\begin{aligned}
0 & =2 \lambda+2 \mu x \\
4 & =-\lambda+2 \mu y \\
-2 & =-\lambda,
\end{aligned}
$$

along with $2 x-y-z=2$ and $x^{2}+y^{2}=1$.
Substituting $\lambda=2$ into the first two equations gives $\mu y=3$ and $\mu x=-2$. Then, multiplying $x^{2}+y^{2}=1$ by μ gives $\mu^{2}=(\mu x)^{2}+(\mu y)^{2}=4+9$ so $\mu= \pm \sqrt{13}$. Thus

$$
x=\mp 2 / \sqrt{13}, \quad \text { and } \quad y= \pm 3 / \sqrt{13} .
$$

Then

$$
z=2 x-y-2=\mp 4 / \sqrt{13} \mp 3 / \sqrt{13}-2=\mp 7 / \sqrt{13}-2 \text {. }
$$

So the two critical points of f on the surface are

$$
\begin{aligned}
& \mathbf{a}_{1}=(2 / \sqrt{13},-3 / \sqrt{13}, 7 / \sqrt{13}-2)^{T} \\
& \mathbf{a}_{2}=(-2 / \sqrt{13}, 3 / \sqrt{13},-7 / \sqrt{13}-2)^{T} .
\end{aligned}
$$

All that remains are the calculations

$$
\begin{aligned}
& f\left(\mathbf{a}_{1}\right)=-26 / \sqrt{13}+4=-2 \sqrt{13}+4 \\
& f\left(\mathbf{a}_{2}\right)=2 \sqrt{13}+4
\end{aligned}
$$

Therefore the maximum value of f on S is $2 \sqrt{13}+4$, the minimum $-2 \sqrt{13}+4$.

7 Find the minimum distance between a point on the circle in \mathbb{R}^{2} with the equation $x^{2}+y^{2}=1$ and a point on the parabola in \mathbb{R}^{2} with the equation $y^{2}=2(4-x)$.
Solution Let $(x, y)^{T}$ be a point on the circle, so $x^{2}+y^{2}=1$, and let $(u, v)^{T}$ be a point on the parabola, so $v^{2}=2(4-u)$. Then, as in Question 2, the problem is to minimize the function $f(\mathbf{x})=(x-u)^{2}+(y-v)^{2}$, where $\mathbf{x}=(x, y, u, v)^{T}$ (the square of the distance between $(x, y)^{T}$ and $\left.(u, v)^{T}\right)$ subject to the constraint

$$
\mathbf{g}(\mathbf{x})=\binom{x^{2}+y^{2}-1}{v^{2}-2(4-u)}=\mathbf{0}
$$

The Jacobian matrix

$$
J \mathbf{g}(\mathbf{x})=\left(\begin{array}{llll}
2 x & 2 y & 0 & 0 \\
0 & 0 & 2 & 2 v
\end{array}\right)
$$

is not of full rank only if either row is zero. The second row is obviously never zero, the first is if $x=y=0$ but this does not satisfy $x^{2}+y^{2}=1$. Hence we can apply the method of Lagrange multipliers. This gives the equations

$$
\nabla f(\mathbf{x})=\lambda \nabla g^{1}(\mathbf{x})+\mu \nabla g^{2}(\mathbf{x}), x^{2}+y^{2}=1 \quad \text { and } \quad v^{2}=2(4-u) .
$$

The first of these is

$$
\left(\begin{array}{c}
2(x-u) \\
2(y-v) \\
-2(x-u) \\
-2(y-v)
\end{array}\right)=\lambda\left(\begin{array}{c}
2 x \\
2 y \\
0 \\
0
\end{array}\right)+\mu\left(\begin{array}{c}
0 \\
0 \\
2 \\
2 v
\end{array}\right) .
$$

So

$$
\begin{align*}
(x-u) & =\lambda x, \tag{1}\\
(y-v) & =\lambda y, \\
-(x-u) & =\mu, \\
-(y-v) & =\mu v .
\end{align*}
$$

There are many ways to solve this system, what follows is just one.
From the last pair $-(x-u)=\mu$ and $-(y-v)=\mu v$ we get $v(x-u)=$ $y-v$. Then from the first pair

$$
\lambda y=y-v=v(x-u)=\lambda v x,
$$

i.e. $\lambda y=\lambda v x$. Thus either $\lambda=0$ or $y=v x$.

- If $\lambda=0$ then from the first two lines in (6) we have $x=u$ and $y=v$, i.e. $(x, y)=(u, v)$. But this is impossible since the curves $x^{2}+y^{2}=$ 1 and $y^{2}=2(4-x)$ do not intersect. (If they did x would satisfy $1-x^{2}=2(4-x)$ and you can check this has no real roots.)
- If $y=v x$ then multiply $v(x-u)=y-v$ through by x and use $v x=y$ to get $y(x-u)=x(y-v)$ i.e. $u y=v x=y$. Thus either $y=0$ or $u=1$.
* If $y=0$ then from $x^{2}+y^{2}=1, x= \pm 1$. From $y=v x, v=0$ in which case, from $v^{2}=2(4-u)$, we obtain $u=4$. So we get the two points

$$
\mathbf{a}_{1}=(1,0,4,0)^{T} \text { and } \mathbf{a}_{2}=(-1,0,4,0)^{T} .
$$

* If $u=1$ then, from $v^{2}=2(4-u)$, we obtain $\nu= \pm \sqrt{6}$. Then $y=v x= \pm \sqrt{6} x$. Using $x^{2}+y^{2}=1$ we find $x= \pm 1 / \sqrt{7}$. Thus we get a further four points

$$
\begin{aligned}
& \mathbf{a}_{3}=(1 / \sqrt{7}, \sqrt{6 / 7}, 1, \sqrt{6})^{T}, \\
& \mathbf{a}_{4}=(1 / \sqrt{7},-\sqrt{6 / 7}, 1,-\sqrt{6})^{T}, \\
& \mathbf{a}_{5}=(-1 / \sqrt{7},-\sqrt{6 / 7}, 1, \sqrt{6})^{T}, \\
& \mathbf{a}_{6}=(-1 / \sqrt{7}, \sqrt{6 / 7}, 1,-\sqrt{6})^{T} .
\end{aligned}
$$

Note that because of $y=v x$ there is not a free choice on the sign of y, it follows from the choices for x and v, thus four points.

Now we are left with the calculations, $f\left(\mathbf{a}_{1}\right)=9, f\left(\mathbf{a}_{2}\right)=25$,

$$
f\left(\mathbf{a}_{3}\right)=f\left(\mathbf{a}_{4}\right)=8-2 \sqrt{7} \text { and } f\left(\mathbf{a}_{6}\right)=f\left(\mathbf{a}_{5}\right)=8+2 \sqrt{7}
$$

The minimum distance therefore is $8-2 \sqrt{7}$, approximately $2.70849 \ldots$.
8. An ellipse in \mathbb{R}^{3} is given by the equations

$$
\left\{\begin{aligned}
2 x^{2}+y^{2} & =4 \\
x+y+z & =0
\end{aligned}\right.
$$

The intersection of a cylinder with a plane.
Use the method of Lagrange multipliers to find the points on the ellipse which are closest to the y-axis.
(This is a question from the June 2012 examination which turned out to be too difficult! It should be alright away from the pressure of the examination room. When you come to solving a system of equations remember to focus on finding x, y and z, i.e. remove the Lagrange parameters λ and μ as soon as possible.)

Solution Given points $(x, y, z)^{T}$ on the ellipse and $(0, v, 0)^{T}$ on the y-axis, the square of their distance apart is $x^{2}+(y-v)^{2}+z^{2}$. When this is minimal we must have $y=v$, and so it remains to minimise $f(\mathbf{x})=x^{2}+z^{2}$, subject to $\mathbf{g}(\mathbf{x})=\mathbf{0}$ where

$$
\mathbf{g}(\mathbf{x})=\binom{2 x^{2}+y^{2}-4}{x+y+z}
$$

The level set $\mathbf{x}: \mathbf{g}(\mathbf{x})=\mathbf{0}$ is closed and bounded. The function f is continuous and so will be bounded and will attain it's bounds.

The Jacobian matrix of \mathbf{g} is

$$
J \mathbf{g}(\mathbf{x})=\left(\begin{array}{ccc}
4 x & 2 y & 0 \\
1 & 1 & 1
\end{array}\right)
$$

This is not full rank only if $x=y=0$ but this does not occur in any solution of $\mathbf{g}(\mathbf{x})=\mathbf{0}$. Hence we can apply the method of Lagrange multipliers and solve

$$
\nabla f(\mathbf{x})=\lambda \nabla g^{1}(\mathbf{x})+\mu \nabla g^{2}(\mathbf{x}) \quad \text { with } \quad \mathbf{x} \in \mathbb{R}^{3}, \lambda, \mu \in \mathbb{R} \quad \text { and } \quad \mathbf{g}(\mathbf{x})=\mathbf{0}
$$

This gives the equations

$$
\begin{aligned}
2 x & =4 \lambda x+\mu, \\
0 & =2 \lambda y+\mu, \\
2 z & =\mu,
\end{aligned}
$$

along with $\mathbf{g}(\mathbf{x})=\mathbf{0}$. Substituting the third equation $\mu=2 z$ into the first two give

$$
x=2 \lambda x+z \quad \text { and } \quad \lambda y=-z .
$$

Multiply the first of these by y and substitute in the second to get

$$
x y=-2 z x+z y=-z(2 x-y) .
$$

From $g^{2}(\mathbf{x})=0$ we have $-z=x+y$ so

$$
x y=(x+y)(2 x-y)=2 x^{2}+x y-y^{2}, \text { i.e. } y^{2}=2 x^{2} .
$$

From $g^{1}(\mathbf{x})=0$, we have $4=2 x^{2}+y^{2}$. Combined with $y^{2}=2 x^{2}$ this gives $4=4 x^{2}$ so $x= \pm 1$. Then $y= \pm \sqrt{2}$ and z follows from $z=-x-y$.

This leads to four critical points of f restricted to the surface:

$$
\begin{aligned}
& \mathbf{a}_{1}=(1, \sqrt{2},-1-\sqrt{2})^{T}, \\
& \mathbf{a}_{2}=(1,-\sqrt{2},-1+\sqrt{2})^{T}, \\
& \mathbf{a}_{3}=(-1, \sqrt{2}, 1-\sqrt{2})^{T}, \\
& \mathbf{a}_{4}=(-1,-\sqrt{2}, 1+\sqrt{2})^{T} .
\end{aligned}
$$

Calculating,

$$
\begin{aligned}
f\left(\mathbf{a}_{1}\right) & =4+2 \sqrt{2}, \\
f\left(\mathbf{a}_{2}\right) & =4-2 \sqrt{2}, \\
f\left(\mathbf{a}_{3}\right) & =4-2 \sqrt{2}, \\
f\left(\mathbf{a}_{4}\right) & =4+2 \sqrt{2} .
\end{aligned}
$$

So \mathbf{a}_{2} and \mathbf{a}_{3} are the points on the ellipse closest to the y-axis.

Solutions to Additional Questions

Solutions have not been written up for all of the following.
9 Show that $x y$ has a maximum on the ellipse $9 x^{2}+4 y^{2}=36$ and find it's value.

Solution The function $x y$ is continuous, the ellipse $9 x^{2}+4 y^{2}=36$ is a closed and bounded set. Hence $x y$ is bounded and attains it's bounds.

Lagrange's multipliers gives $y=18 \lambda x$ and $x=8 \lambda y$. Then

$$
x=8 \lambda y=8 \lambda(18 \lambda x)
$$

so either $x=0$ or $1=144 \lambda^{2}$.

- If $x=0$ then $y=18 \lambda x=0$. Yet $(0,0)^{T}$ does not satisfy $9 x^{2}+4 y^{2}=36$ so there are no critical points with $x=0$.
- If $1=144 \lambda^{2}$ then $\lambda= \pm 1 / 12$ and thus $y= \pm 3 x / 2$. In $9 x^{2}+4 y^{2}=36$ this gives $18 x^{2}=36$ and thus $x= \pm \sqrt{2}$. Hence we have four critical points:

$$
(\sqrt{2}, 3 / \sqrt{2})^{T},(\sqrt{2},-3 / \sqrt{2})^{T},(-\sqrt{2}, 3 / \sqrt{2})^{T} \text { and }(-\sqrt{2},-3 / \sqrt{2})^{T}
$$

The maximal $x y$ will come from critical points with non-zero coordinates of the same sign, i.e. $(\sqrt{2}, 3 / \sqrt{2})^{T}$ and $(-\sqrt{2},-3 / \sqrt{2})^{T}$. Hence the maximal value is 3 .

10 Find the maximum and minimum values of

$$
x^{2}+y^{2}+z^{2}-x y-x z-y z
$$

subject to the condition

$$
x^{2}+y^{2}+z^{2}-2 x+2 y+6 z+9=0 .
$$

Solution We can complete the squares so

$$
\begin{aligned}
0 & =x^{2}+y^{2}+z^{2}-2 x+2 y+6 z+9 \\
& =(x-1)^{2}+(y+1)^{2}+(z+3)^{2}-2 .
\end{aligned}
$$

Thus, geometrically, we are looking for the extrema of

$$
f(\mathbf{x})=x^{2}+y^{2}+z^{2}-x y-x z-y z
$$

subject to $\mathbf{x} \in \mathbb{R}^{3}$ lying on the surface of a sphere, centre $(1,-1,-3)^{T}$, radius $\sqrt{2}$. The surface of a sphere is closed and bounded. The function f is continuous and so will be bounded and will attain it's bounds.

Let $g(\mathbf{x})=x^{2}+y^{2}+z^{2}-2 x+2 y+6 z+9$. Then

$$
J g(\mathbf{x})=(2 x-2,2 y+2,2 z+6),
$$

which is zero only if $\mathbf{x}=(1,-1,-3)$. But since g is not zero at this point $J g(\mathbf{x})$ is of full rank at $\mathbf{x}: g(\mathbf{x})=0$. So we can apply the method of Lagrange multiplies, which requires solving $\nabla f(\mathbf{x})=\lambda \nabla g(\mathbf{x})$ for some $\lambda \in \mathbb{R}$. From this we get

$$
\begin{align*}
& 2 x-y-z=2 \lambda x-2 \lambda, \tag{2}\\
& 2 y-x-z=2 \lambda y+2 \lambda, \tag{3}\\
& 2 z-x-y=2 \lambda z+6 \lambda,
\end{align*}
$$

along with $g(\mathbf{x})=0$.
Summing the equations above gives $0=2 \lambda(x+y+z+3)$. So either $\lambda=0$ or $x+y+z+3=0$.

- If $\lambda=0$ then

$$
\begin{aligned}
& 2 x-y-z=0 \\
& 2 y-x-z=0 \\
& 2 z-x-y=0
\end{aligned}
$$

Subtracting the first two gives $x=y$. In the third get $x=y=z$. From $g(\mathbf{x})=0$ then get $3 x^{2}+6 x+9=0$, i.e. $x^{2}+2 x+3=0$. But this has no real solutions since $x^{2}+2 x+3=(x+1)^{2}+2 \geq 2>0$.

- Hence $\lambda \neq 0$ and we must have $x+y+z+3=0$. Rearrange, $z=$ $-3-x-y$ and substitute into (2) and (3) to get

$$
(2 \lambda-3) x=3+2 \lambda \quad \text { and } \quad(2 \lambda-3) y=3-2 \lambda .
$$

Then

$$
(2 \lambda-3) z=-3(2 \lambda-3)-x(2 \lambda-3)-y(2 \lambda-3)=-6 \lambda+3 .
$$

Substitute into $g(\mathbf{x})=0$ to get

$$
0=-2 \frac{4 \lambda^{2}-12 \lambda-27}{(2 \lambda-3)^{2}}
$$

The numerator factorises as $(3+2 \lambda)(2 \lambda-9)$ so we find two solutions $\lambda=-3 / 2$ and $\lambda=9 / 2$. Substituted back in we find

$$
\mathbf{a}_{1}=(0,-1,-2)^{T} \quad \text { and } \quad \mathbf{a}_{2}=(2,-1,-4)^{T} .
$$

The calculations are $f\left(\mathbf{a}_{1}\right)=3$, the minimum and $f\left(\mathbf{a}_{1}\right)=27$ the maximum value.
11. Find the shortest distance from the origin to $x^{2}+3 x y+y^{2}=4$.
12. Find the shortest distance from $(0,0,1)^{T}$ to $y^{2}+x^{2}+4 x y=4$ in the $x-y$ plane.

Solution This problem is in \mathbb{R}^{3} even though $y^{2}+x^{2}+4 x y=4$ appears to be in \mathbb{R}^{2}. The general point of \mathbb{R}^{3} on $y^{2}+x^{2}+4 x y=4$ is $(x, y, 0)^{T}$. The (square of the) distance of this point from $(0,0,1)^{T}$ is $x^{2}+y^{2}+1$. So we need minimise $x^{2}+y^{2}+1$ subject to $y^{2}+x^{2}+4 x y=4$. Lagrange multipliers give

$$
2 x=\lambda(2 x+4 y) \quad \text { and } \quad 2 y=\lambda(2 y+4 x) .
$$

Rearrange as $(1-\lambda) x=2 \lambda y$ and $(1-\lambda) y=2 \lambda x$. Then

$$
(1-\lambda)^{2} x=(1-\lambda) 2 \lambda y=4 \lambda^{2} x .
$$

So either $x=0$ or $(1-\lambda)^{2}=4 \lambda^{2}$.

- If $x=0$ in $y^{2}+x^{2}+4 x y=4$ then $y= \pm 2$. So we get two critical points

$$
(0,2,0)^{T} \quad \text { and } \quad(0,-2,0)^{T} .
$$

- If $(1-\lambda)^{2}=4 \lambda^{2}$ then either $1-\lambda=2 \lambda$ or $1-\lambda=-2 \lambda$.
* If $1-\lambda=2 \lambda$, i.e. $\lambda=1 / 3$, then $(1-\lambda) x=2 \lambda y$ implies $x=y$. In $y^{2}+x^{2}+4 x y=4$ this leads to $6 x^{2}=4$, so $x= \pm \sqrt{2 / 3}$. This gives two more critical points

$$
(\sqrt{2 / 3}, \sqrt{2 / 3}, 0)^{T} \quad \text { and } \quad(-\sqrt{2 / 3},-\sqrt{2 / 3}, 0)^{T}
$$

* If $1-\lambda=-2 \lambda$, i.e. $\lambda=-1$, then $(1-\lambda) x=2 \lambda y$ implies $x=-y$. In $y^{2}+x^{2}+4 x y=4$ this leads to $-2 x^{2}=4$ which has no real roots and we get no more critical points.

The last two critical points give the minimal distance, $4 / 3$.
13. A cylindrical can (with top and bottom) has volume V. Subject to this constraint, what dimensions give it the least surface area?

Idea of solution If the cylinder of height h and radius r the area is $2 \pi r h+$ $2 \pi r^{2}$ and volume $\pi r^{2} h$. So the essence of the question is to minimise $r h+r^{2}$ subject to $\pi r^{2} h=V$.

Solution Define $g(h, r)=\pi r^{2} h-V$ and $f(r, h)=r h+r^{2}$. The set of $(h, r)^{T}: g(h, r)=0$ is closed but not bounded. But f is continuous and bounded below by 0 . Thus it will have a minimum value.

The Jacobian matrix is $J g(h, r)=\left(\pi r^{2}, 2 \pi r h\right)$. This is only not of full rank if $r=0$ but this does not satisfy $g(h, r)=0$ for any h. Hence the Jacobian matrix is of full-rank and we can apply Lagrange's method to find $\lambda: \nabla f(h, r)=\lambda \nabla g(h, r)$. That is

$$
r=\lambda \pi r^{2} \quad \text { and } \quad h+2 r=\lambda 2 r \pi h,
$$

along with $g(h, r)=0$.
From $r=\lambda \pi r^{2}$ we have either $r=0$, but we saw above that this was impossible, or $1=\lambda \pi r$. In the second equation this gives $h+2 r=2 h$, i.e. $h=2 r$. (The height of the cylinder equals the diameter of the base.) In $g(h, r)=0$ this gives $2 \pi r^{3}=V$. Then $r=(V / 2 \pi)^{1 / 3}, h=2(V / 2 \pi)^{1 / 3}$ and the surface area is

$$
3(2 \pi)^{1 / 3} V^{2 / 3}
$$

14. Find the nearest point on the ellipse $x^{2}+2 y^{2}=1$ to the line $x+y=4$.

Idea of solution If $(x, y)^{T}$ is a point on the ellipse and $(u, v)^{T}$ a point on the line then $(x-u)^{2}+(y-v)^{2}$ is the square of the distance between the two points. So need to minimise $(x-u)^{2}+(y-v)^{2}$ subject to $x^{2}+2 y^{2}=1$ and $u+v=4$.
15. How close does the intersection of the planes $v+w+x+y+z=1$ and $v-w+2 x-y+z=-1$ in \mathbb{R}^{5} come to the origin?
Idea of solution To minimise $v^{2}+w^{2}+x^{2}+y^{2}+z^{2}$ (the square of the distance of $(v, w, x, y, z)^{T}$ from the origin) subject to $v+w+x+y+z=1$ and $v-w+2 x-y+z=-1$. The answer is $\sqrt{612} / 36$.

Solution Let

$$
\mathbf{g}(\mathbf{x})=\binom{v+w+x+y+z-1}{v-w+2 x-y+z+1} .
$$

for $\mathbf{x}=(x, y, z, v, w)^{T}$. Then

$$
J \mathbf{g}(\mathbf{x})=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
2 & -1 & 1 & 1 & -1
\end{array}\right)
$$

which is of full-rank. So we can apply Lagrange's method, solving $\nabla f(\mathbf{x})=$ $\lambda \nabla g^{1}(\mathbf{x})+\mu \nabla g^{2}(\mathbf{x})$ for some $\lambda, \mu \in \mathbb{R}$ along with $g^{1}(\mathbf{x})=0$ and $g^{2}(\mathbf{x})=0$. The first condition leads to

$$
\begin{aligned}
& 2 v=\lambda+\mu, \\
& 2 w=\lambda-\mu, \\
& 2 x=\lambda+2 \mu, \\
& 2 y=\lambda-\mu \\
& 2 z=\lambda+\mu .
\end{aligned}
$$

From these we see that $z=v$ and $y=w$. Substituted into $g^{1}(\mathbf{x})=0$ and $g^{2}(\mathbf{x})=0$ we have 5 equations in 5 unknowns:

$$
\begin{aligned}
& 2 v=\lambda+\mu, \\
& 2 w=\lambda-\mu, \\
& 2 x=\lambda+2 \mu, \\
& 2 v+2 w+x=1, \\
& 2 v-2 w+2 x=-1
\end{aligned}
$$

The first two give $2 v+2 w=2 \lambda$. The second and third $4 w+2 x=3 \lambda$. Thus we have three equations in three unknowns:

$$
\begin{aligned}
& 3 v-w-2 x=0 \\
& 2 v+2 w+x=1 \\
& 2 v-2 w+2 x=-1 .
\end{aligned}
$$

In matrix form

$$
\left(\begin{array}{rrr}
3 & -1 & -2 \\
2 & 2 & 1 \\
2 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
v \\
w \\
x
\end{array}\right)=\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right)
$$

Thus

$$
\left(\begin{array}{l}
v \\
w \\
x
\end{array}\right)=\frac{1}{36}\left(\begin{array}{ccc}
6 & 6 & 3 \\
-2 & 10 & -7 \\
-8 & 4 & 8
\end{array}\right)\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right)=\frac{1}{36}\left(\begin{array}{c}
3 \\
17 \\
-4
\end{array}\right) .
$$

Then

$$
\begin{aligned}
f(\mathbf{x}) & =v^{2}+w^{2}+x^{2}+y^{2}+z^{2}=2 v^{2}+2 w^{2}+x^{2} \\
& =\frac{1}{36^{2}}\left(2 \times 3^{2}+2 \times 17^{2}+(-4)^{2}\right) \\
& =\frac{612}{36^{2}} .
\end{aligned}
$$

We have minimised the square of the distance, so the minimum distance is $\sqrt{612} / 36$.
16. Let x_{1}, \ldots, x_{5} be 5 positive numbers. Maximise their product subject to the constraint that $x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=300$.

Solution Let $f(\mathbf{x})=x_{1} x_{2} x_{3} x_{4} x_{5}$ and $g(\mathbf{x})=x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}-300$ for $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{T} \in \mathbb{R}^{5}$. First, $\operatorname{Jg}(\mathbf{x})=(1,2,3,4,5) \neq \mathbf{0}$ and so we can apply Lagrange's method. This means solving $\nabla f(\mathbf{x})=\lambda \nabla g(\mathbf{x})$ for some $\lambda \in \mathbb{R}$ along with $g(\mathbf{x})=0$ and $x_{i}>0$ for $1 \leq i \leq n$. That is,

$$
\begin{align*}
& x_{2} x_{3} x_{4} x_{5}=\lambda \\
& x_{1} x_{3} x_{4} x_{5}=2 \lambda \\
& x_{1} x_{2} x_{4} x_{5}=3 \lambda \tag{4}\\
& x_{1} x_{2} x_{3} x_{5}=4 \lambda \\
& x_{1} x_{2} x_{3} x_{4}=5 \lambda,
\end{align*}
$$

with $g(\mathbf{x})=0$ and $x_{i}>0$ for $1 \leq i \leq n$. From (4) we see that

$$
\begin{equation*}
\lambda x_{1}=2 \lambda x_{2}=3 \lambda x_{3}=4 \lambda x_{4}=5 \lambda x_{5} . \tag{5}
\end{equation*}
$$

If $\lambda=0$ then, from (4), at least one $x_{i}=0$ when $f(\mathbf{x})=0$. Presumably we can find larger values for $f(\mathbf{x})$ so assume $\lambda \neq 0$. Then from (5),

$$
x_{1}=2 x_{2}=3 x_{3}=4 x_{4}=5 x_{5} .
$$

For this \mathbf{x} we have

$$
\begin{aligned}
g(\mathbf{x}) & =x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}-300 \\
& =5 x_{5}+5 x_{5}+5 x_{5}+5 x_{5}+5 x_{5}-300 \\
& =25 x_{5}-300
\end{aligned}
$$

The requirement $g(\mathbf{x})=0$ gives $x_{5}=12$. Thus

$$
x_{1}=60, x_{2}=30, x_{3}=20 \text { and } x_{4}=15 .
$$

At this point $\mathbf{x}=(60,30,20,15,12)^{T}$ we find that $f(\mathbf{x})=6480000$.
17. Find the distance from the point $(10,1,-6)$ to the intersection of the planes $x+y+2 z=5$ and $2 x-3 y+z=12$.
Solution To minimise $(x-10)^{2}+(y-1)^{2}+(z+6)^{2}$ subject to

$$
\begin{equation*}
x+y+2 z=5 \text { and } 2 x-3 y+z=12 . \tag{6}
\end{equation*}
$$

The Jacobian matrix of this level set,

$$
\left(\begin{array}{rrr}
1 & 1 & 2 \\
2 & -3 & 1
\end{array}\right),
$$

is of full-rank and so we can apply the method of Lagrange multipliers. This means solving

$$
\left(\begin{array}{l}
2(x-10) \\
2(y-1) \\
2(z+6)
\end{array}\right)=\lambda\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+\mu\left(\begin{array}{r}
2 \\
-3 \\
1
\end{array}\right),
$$

with $\lambda, \mu \in \mathbb{R}$ along with (6).

$$
\begin{aligned}
2(x-10) & =\lambda+2 \mu \\
2(y-1) & =\lambda-3 \mu \\
2(z+6) & =2 \lambda+\mu
\end{aligned}
$$

Then 3 (a) +2 (b) and (b) +3 (c) give

$$
\begin{aligned}
6(x-10)+4(y-1) & =5 \lambda, \\
6(z+6)+2(y-1) & =7 \lambda .
\end{aligned}
$$

Remove λ and rearrange to $7 x+3 y-5 z=103$. We thus have

$$
\begin{aligned}
x+y+2 z & =5 \\
2 x-3 y+z & =12 \\
7 x+3 y-5 z & =103 .
\end{aligned}
$$

Solve. One way is to write it as

$$
\left(\begin{array}{rrr}
1 & 1 & 2 \\
2 & -3 & 1 \\
7 & 3 & -5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
5 \\
12 \\
103
\end{array}\right) .
$$

The inverse of the matrix is

$$
\frac{1}{83}\left(\begin{array}{ccc}
12 & 11 & 7 \\
17 & -19 & 3 \\
27 & 4 & -5
\end{array}\right)
$$

Hence

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{83}\left(\begin{array}{ccc}
12 & 11 & 7 \\
17 & -19 & 3 \\
27 & 4 & -5
\end{array}\right)\left(\begin{array}{c}
5 \\
12 \\
103
\end{array}\right)=\left(\begin{array}{c}
11 \\
2 \\
-4
\end{array}\right) .
$$

Therefore, the nearest point on line is $(11,2,-4)^{T}$ and the.distance is $\sqrt{6}$.
18. If a and b are positive numbers find the maximum and minimum values of $(x v-y u)^{2}$ subject to the constraints $x^{2}+y^{2}=a^{2}$ and $u^{2}+v^{2}=b^{2}$.
Geometrically Consider two concentric circles with centre the origin, of radius a and b. Let $\mathbf{x}=(x, y)^{T}$ be a point on the circle of radius a and $\mathbf{u}=(u, v)$ a point on the circle of radius b. Look upon \mathbf{x} and \mathbf{u} as vectors based at the origin. Then $|x v-y u|=|\mathbf{x} \wedge \mathbf{u}|$, which represents the area between the vectors \mathbf{x} and \mathbf{u}. It is the case that this is minimised when \mathbf{x} and \mathbf{u} lie in the same direction, for the area will be zero. It doesn't seem unreasonable that the maximum is when \mathbf{x} and \mathbf{u} are orthogonal in which case $|\mathbf{x} \wedge \mathbf{u}|=|\mathbf{x}||\mathbf{u}|=a b$. To prove this we might note that whatever \mathbf{x} and \mathbf{u} are, we can rotate the situation so that \mathbf{u} lies along the x-axis, i.e. $\mathbf{u}=(b, 0)$. Then the problem reduces to one of finding the extrema of $y^{2} b^{2}$ subject to $x^{2}+y^{2}=a^{2}$.
19. Find the dimensions of the box parallel to the axes of maximum volume given that the surface area is $10 \mathrm{~m}^{2}$.

Idea of solution If x, y and z are the lengths of the sides of the box then the volume is $x y z$ and the surface area $2(x y+y z+x z)$. So maximise $x y z$ subject to $x y+y z+x z=5$.
Solution Let $f(\mathbf{x})=x y z$ and $S(\mathbf{x})=x y+y z+x z-5$ for $\mathbf{x} \in \mathbb{R}^{3}$. Physical constraints imply that $x>0, y>0$ and $z>0$ Our problem is to determine
the maximum of $f(\mathbf{x})$ subject to $S(\mathbf{x})=0$ and $x>0, y>0$ and $z>0$. The gradient vectors are

$$
\nabla f(\mathbf{x})=(y z, x z, x y)^{T} \text { and } \nabla S(\mathbf{x})=(y+z, x+z, x+y)^{T} .
$$

Note first that, $\nabla S(\mathbf{x})=\mathbf{0}$, if, and only if, $\mathbf{x}=\mathbf{0}$, which does not satisfy $S(\mathbf{x})=0$. So we can apply the method of Lagrange multiplies, which requires solving $\nabla f(\mathbf{x})=\lambda \nabla S(\mathbf{x})$ for some $\lambda \in \mathbb{R}$ along with $S(\mathbf{x})=0$. That is

$$
\begin{aligned}
& y z=\lambda(y+z), \\
& x z=\lambda(x+z), \\
& x y=\lambda(x+y) .
\end{aligned}
$$

If $\lambda=0$ then $y z=x z=x y=0$. Adding together we see that $S(\mathbf{x})=$ $-5 \neq 0$. So we have $\lambda \neq 0$.

Multiply by the appropriate factor to get

$$
\begin{aligned}
x y z & =\lambda(x y+x z), \\
x y z & =\lambda(x y+y z), \\
x y z & =\lambda(x z+y z) .
\end{aligned}
$$

Since $\lambda \neq 0$ we can divide by λ and deduce that $x y+x z=x y+y z=$ $x z+y z$, i.e. $y z=x z=x y$. Since no term is 0 we find that $x=y=z$. In $S(\mathbf{x})=5$ this leads to $3 x^{2}=5$, i.e. $x=(5 / 3)^{1 / 2}$. Then the maximal volume is $(5 / 3)^{3 / 2}$.

